MODE IN ONCOLOGY

Tumor growth model applied for meningiomas : first clinical validation

V. Pianet^{1,2}, T. Colin^{3,2}, H. Loiseau⁴, J. Joie^{1,2}, J. Lafourcade⁴, G. Kantor^{5,6}, A. Bigourdan⁴, B. Taton^{2,4} and O. Saut^{2,7}

¹ Université de Bordeaux, IMB, UMR 5251, F-33400 Talence, France.
² INRIA Bordeaux-Sud-Ouest MONC, F-33400 Talence, France.
³ Bordeaux INP, IMB, UMR 5251, F-33400 Talence, France.
⁴ Hôpital Pellegrin, CHU Bordeaux, 33000 Bordeaux, France.
⁵ Université de Bordeaux, F-33400 Talence, France.
⁶ Institut Bergonié, Comprehensive Cancer Center, 33000 Bordeaux, France.
⁷ CNRS, IMB, UMR 5251, F-33400 Talence, France.

- CNIV2017 08/11/2017 -

Meningiomas

Intracranial tumor arising from uncontrolled mitosis of arachnoidal cells

Meningiomas represents 30% of primary brain tumors

Non malignant tumor with a slow growth rate

Tumor expansion may compress and permanently damages neighboring healthy tissues.

Objectives

CHU Bordeaux (MRI T1 sequence, contrast agent: Gadolinium)

 $t_0 = 0 \text{ day}$ $t_1 = 169 \text{ days}$ $t_2 = 330 \text{ days}$

> Can we **model** the meningioma growth?

Can we **predict** (or at least estimate) the growth?

Clinical goal : can we predict the tumor volume and shape at time t_2 from the imaging data at t_1 and t_0 ?

We consider one population of tumoral cells and the surrounding medium.

The mitosis occurs homogenously in the tumour.

The surrounding medium is simply pushed away by the tumoral cells with a speed that is directly linked to the mitosis capacity.

The growth starts from the arachnoid towards the brain.

Prediction and simulation method

Semi-automatic 3D segmentation tool

Model personalization

Time (days)

Case #6

Time (days)

Prediction results

Cohort 1:

- 8 patients
- Mean relative error = 14.3%
- Linear regression : y = -0.23 + 1.10x ($R^2 = 0.866$)

• Cohort 2:

- 30 patients
- Mean relative error = 12.7%
- Linear regression : y = 0.06 + 1.03x (R² = 0.986)

Cohort 3:

- 18 patients
- Mean relative error = 12.6%
- Linear regression : y = -0.21 + 1.09x ($R^2 = 0.980$)

Simulation result

Numerical modeling can improve the monitoring of asymptomatic meningiomas

Optimization of the imaging examination frequency.

Prediction of the brain sensitive structure compression.

A medical software offering segmentation and prediction tools is currently under development