# Large-scale analyses in functional brain Imaging

### Bertrand Thirion bertrand.thirion@inria.fr



12/02/2016

## Outline

- The importance of using large(r) datasets in medical imaging
- Combining modalities to increase power
- Identify ensuing computational bottlenecks and algorithmic solutions



#### 12/02/2016

## Imaging in the low power regime

### Low power → unreliable findings

Low positive predictive value: low likelihood that a statistically significant finding is actually true





**Exaggerated estimate of the magnitude** of discovered effects "*winner's curse*"

## Medical imaging in the big data era?

- Neuroscientists reluctant to using big data : this is a burden
- Common belief : you should only focus on large effects
  → small datasets are good enough
- But...

Nature Reviews Neuroscience | AOP, published online 10 April 2013; doi:10.1038/nrn3475



# Power failure: why small sample size undermines the reliability of neuroscience

Katherine S. Button<sup>1,2</sup>, John P. A. Ioannidis<sup>3</sup>, Claire Mokrysz<sup>1</sup>, Brian A. Nosek<sup>4</sup>, Jonathan Flint<sup>5</sup>, Emma S. J. Robinson<sup>6</sup> and Marcus R. Munafò<sup>1</sup>

### Example

OASIS dataset, effet of age on gray matter density



n=10 n=20 n=30 n=50 n=70 n=100

Reproducibility by bootstrap: 7% 19% 32%

53%

66%

75%



### Multivariate analysis



12/02/2016

## Multivariate\_analysis



## Large-scale connectome analysis for disease prediction



#### 871 subjects, 300-400GB of data

12/02/2016

Large scale connectome analysis for disease prediction

- Classification of ASD patients
  - Public ABIDE dataset [Di Martino et al. Mol. Psych. 2014]
  - Large heterogeneity: multi-centric study
  - Functional connectivity: weakly sensitive marker
- 68% correct classification (65% when generalizing across sites)

# Large scale connectome analysis for disease prediction

What are the most important factors of the pipeline ?





Response: the choice of the atlas.

[Abraham et al. Subm to NIMG]

12/02/2016

# Large scale connectome analysis for disease prediction

More subjects  $\rightarrow$  higher accuracy

Impact of the number of regions

Asymptote not yet reached at n=871





### Leveraging multi-modal datasets



## Combining images from Different modalities



#### 12/02/2016

# Trans-modal priors improve discriminative models

## Diagnosis of Alzheimer disease (Alzheimer vs MCI) using resting-state fMRI and a PET prior



12/02/2016

## Trans-modal priors improve discriminative models



[Rahim et al. MICCAI 2015]

12/02/2016

# Using rest data to better model task data

- A wealth of "restingstate" data available
- Little cognitive data with proper annotations
- Idea: use unlabelled data to improve the learning of discriminative models



[Bzdok et al. NIPS 2015]

12/02/2016

# Using rest data to better model task data

- A wealth of "restingstate" data available
- Little cognitive data with proper annotations
- Idea: use unlabelled data to improve the learning of discriminative models



[Bzdok et al. NIPS 2015]

12/02/2016

## Using rest data to better model task data data SS-F LogReg

 The discriminative patterns for many task data is much cleaner thanks to the composite objective



[Bzdok et al. NIPS 2015]

12/02/2016

## Technical aspects of big data analysis



## Big data in medical imaging ?

HCP mailing list, Jan 19th, 2015

"Has anyone on the run group-wise analysis on the HCP resting state data, and if so what tools did you use?

I am having memory issues when running more than 10 subjects and I was wondering if anyone has a way of getting around the large memory requirements when concatenating in time."

## **Diagnosis and strategy**

- Modern, multiple, datasets: 100 GB-TBs
  - Do not fit in memory. Need online learning
  - Memory access is the main bottleneck
  - Large p, large n
  - Better file formats would help, but compatibility with existing tool stacks.
- Agile approach: readable Python code, runs on your laptop
  - Online learning, SGD algorithms
  - compression

## Caching & parallel comp.: joblib

#### Table Of Contents

#### Introduction

- Vision
- Main features
  User manual

Module reference

#### Next topic

| Mby | ioblib | · pro | ioct | aoal | C |
|-----|--------|-------|------|------|---|
|     | unuu   | . 010 | ECL  | uuai | 5 |
|     |        |       |      |      |   |

#### Quick search

Enter search terms or a module, class or function name.

Go

#### Mailing list

### Joblib: running Python functions as pipeline jobs

#### Introduction

Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers:

- 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern)
- 2. easy simple parallel computing
- 3. logging and tracing of the execution

Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for *numpy* arrays. It is **BSD-licensed**.

## Fast image compression

• Cost of Logistic regression  $\propto pn^2$ 

+ memory consumption  $\propto$  pn

- Solution: reduce p by compression
  - Random projections [Johnson, Lindenstrauss, AMS 1984]
    - Explicit control on precision
  - Clustering: informed by data [Thirion et al. Stamlins 2015]



12/02/2016

## Efficient discriminative models

Example: HCP dataset, multi-class prediction (k=18), clustering + fit time



- Time savings are more than linear wrt data volume
- Data compression also benefits to accuracy

### (Sparse) Principal Components Analysis

• Identify structure in data with *dictionary learning / sparse principal components analysis* 



- Memory cost: n.p → scales poorly with large n (large number of subjects): 2TB of data on HCP
  - Run this on computers with 8GB of RAM
  - Possible with stochastic (online) methods !

[Mensch et al. ISBI 2016, ICML 2016]



12/02/2016

## Summary

- Large(r) sample sizes to make imagine findings more reliable
  - Even though less homogeneous data
- Combining multi-modal data to improve statistical analysis
- Improve software to support large data analysis
  - Reduce memory requirements: online methods
  - Leverage parallel computers



## Acknowledgements

#### Parietal

- G. Varoquaux,
- P. Ciuciu
- A. Gramfort,
- O. Grisel,
- L. Estève,
- Y. Schwartz,
- F. Pedregosa,
- E. Dohmatob,
- A. H. Idrobo,
- V. Fritsch,
- M. Eickenberg,
- R. Bricquet
- A. Abraham
- D. Bzdok
- A. Frau

12/02/2016

N. Chauffert

**Other collaborators** (thanks for the data)

S. Dehaene E. Eger, R. Poldrack, K. Jimura, J. Haxby C. F. Gorgolevski JB. Poline

Brainpedia project Brainpedia project Microsoft Research - Inria JOINT CENTRE Human Brain Project